Grothendieck-to-Lascoux expansions

نویسندگان

چکیده

We establish the conjecture of Reiner and Yong for an explicit combinatorial formula expansion a Grothendieck polynomial into basis Lascoux polynomials. This is subtle refinement its symmetric function version due to Buch, Kresch, Shimozono, Tamvakis, Yong, which gives stable polynomials indexed by permutations Grassmannian Our K K -theoretic analogue that Schubert Demazure characters, whose Stanley Schur functions. expansions extend flagged

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grothendieck rings of o-minimal expansions of ordered abelian groups

We will calculate completely the Grothendieck rings, in the sense of first order logic, of o-minimal expansions of ordered abelian groups by introducing the notion of the bounded Euler characteristic.

متن کامل

GROTHENDIECK POLYNOMIALS AND QUIVER FORMULAS By ANDERS S. BUCH, ANDREW KRESCH, HARRY TAMVAKIS, and ALEXANDER YONG

Fulton’s universal Schubert polynomials give cohomology formulas for a class of degeneracy loci, which generalize Schubert varieties. The K-theoretic quiver formula of Buch expresses the structure sheaves of these loci as integral linear combinations of products of stable Grothendieck polynomials. We prove an explicit combinatorial formula for the coefficients, which shows that they have altern...

متن کامل

About division by 1 Alain Lascoux

The Euclidean division of two formal series in one variable produces a sequence of series that we obtain explicitly, remarking that the case where one of the two initial series is 1 is sufficiently generic. As an application, we define a Wronskian of symmetric functions. The Euclidean division of two polynomials P (z), Q(z), in one variable z, of consecutive degrees, produces a sequence of line...

متن کامل

Grothendieck quasitoposes

Article history: Received 28 June 2011 Available online 31 January 2012 Communicated by Michel Van den Bergh

متن کامل

Combinatorial Formulae for Grothendieck-demazure and Grothendieck Polynomials

∂if = f− sif xi − xi+1 where si acts on f by transposing xi and xi+1 and let π̃i = ∂i(xi(1− xi+1)f) Then the Grothendieck-Demazure polynomial κα, which is attributed to A. Lascoux and M. P. Schützenberger, is defined as κα = x α1 1 x α2 2 x α3 3 ... if α1 ≥ α2 ≥ α3 ≥ ..., i.e. α is non-increasing, and κα = π̃iκαsi if αi < αi+1, where si acts on α by transposing the indices. Example 2.1. Let α = (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2023

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8912